Integrative Physiology Role of RyR2 Phosphorylation at S2814 During Heart Failure Progression
نویسندگان
چکیده
Rationale: Increased activity of Ca /calmodulin-dependent protein kinase II (CaMKII) is thought to promote heart failure (HF) progression. However, the importance of CaMKII phosphorylation of ryanodine receptors (RyR2) in HF development and associated diastolic sarcoplasmic reticulum Ca leak is unclear. Objective: Determine the role of CaMKII phosphorylation of RyR2 in patients and mice with nonischemic and ischemic forms of HF. Methods and Results: Phosphorylation of the primary CaMKII site S2814 on RyR2 was increased in patients with nonischemic, but not with ischemic, HF. Knock-in mice with an inactivated S2814 phosphorylation site were relatively protected from HF development after transverse aortic constriction compared with wild-type littermates. After transverse aortic constriction, S2814A mice did not exhibit pulmonary congestion and had reduced levels of atrial natriuretic factor. Cardiomyocytes from S2814A mice exhibited significantly lower sarcoplasmic reticulum Ca leak and improved sarcoplasmic reticulum Ca loading compared with wild-type mice after transverse aortic constriction. Interestingly, these protective effects on cardiac contractility were not observed in S2814A mice after experimental myocardial infarction. Conclusions: Our results suggest that increased CaMKII phosphorylation of RyR2 plays a role in the development of pathological sarcoplasmic reticulum Ca leak and HF development in nonischemic forms of HF such as transverse aortic constriction in mice. (Circ Res. 2012;110:1474-1483.)
منابع مشابه
Role of RyR2 phosphorylation at S2814 during heart failure progression.
RATIONALE Increased activity of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is thought to promote heart failure (HF) progression. However, the importance of CaMKII phosphorylation of ryanodine receptors (RyR2) in HF development and associated diastolic sarcoplasmic reticulum Ca(2+) leak is unclear. OBJECTIVE Determine the role of CaMKII phosphorylation of RyR2 in patients and mice ...
متن کاملRyanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure.
BACKGROUND approximately half of patients with heart failure die suddenly as a result of ventricular arrhythmias. Although abnormal Ca(2+) release from the sarcoplasmic reticulum through ryanodine receptors (RyR2) has been linked to arrhythmogenesis, the molecular mechanisms triggering release of arrhythmogenic Ca(2+) remain unknown. We tested the hypothesis that increased RyR2 phosphorylation ...
متن کاملIntact beta-adrenergic response and unmodified progression toward heart failure in mice with genetic ablation of a major protein kinase A phosphorylation site in the cardiac ryanodine receptor.
Increased phosphorylation of the cardiac ryanodine receptor (RyR)2 by protein kinase A (PKA) at the phosphoepitope encompassing Ser2808 has been advanced as a central mechanism in the pathogenesis of cardiac arrhythmias and heart failure. In this scheme, persistent activation of the sympathetic system during chronic stress leads to PKA "hyperphosphorylation" of RyR2-S2808, which increases Ca2+ ...
متن کاملRole of CaMKIIdelta phosphorylation of the cardiac ryanodine receptor in the force frequency relationship and heart failure.
The force frequency relationship (FFR), first described by Bowditch 139 years ago as the observation that myocardial contractility increases proportionally with increasing heart rate, is an important mediator of enhanced cardiac output during exercise. Individuals with heart failure have defective positive FFR that impairs their cardiac function in response to stress, and the degree of positive...
متن کاملPhosphorylation of RyR2 and shortening of RyR2 cluster spacing in spontaneously hypertensive rat with heart failure.
As a critical step toward understanding the role of abnormal intracellular Ca(2+) release via the ryanodine receptor (RyR(2)) during the development of hypertension-induced cardiac hypertrophy and heart failure, this study examines two questions: 1) At what stage, if ever, in the development of hypertrophy and heart failure is RyR(2) hyperphosphorylated at Ser(2808)? 2) Does the spatial distrib...
متن کامل